Workshop summary report

Heavy Ions and New Physics

indico.cern.ch/e/Heavy-Ions-and-New-Physics

Jan Hajer

Universität Basel

Energy Frontier Workshop — Restart

Introduction

2018 workshop

Goals

Exploration of New Physics searches in heavy ion collisions

First workshop resulted in

contribution to 'European Strategy for Particle Physics' (ESPP)

New physics searches with heavy-ion collisions at the CERN Large Hadron Collider

Roderik Bruce¹, David d'Enterria-^{2,16}e, Albert de Roeck², Marco Drewse², Glennys R Farar² o, Andrea Glammanco² Oliver Gould⁵, Jan Hajer² e, Lucian Harland-Lang⁶, Jan Hejer² e, Lucian Harland-Lang⁶, Jan Heisig¹ a) John M Joweth² Sonia Kabana² Georgio K Kritiiras ^{3,1} e, Michael Korsmeier^(3,10), Michele Lucente² e, Guilherme Mihana ^{1,12}, Swagata Mukherjee³ Jeremi Niedziela² e, Vitali A Okrorkov^{1,16} e, Artis Dalainde³ and Michaelas Chaumana^{1,16}

J. Phys. G 47 (2020) 6, 060501 e-print: 1812.07688 [hep-ph]

In the process of formulating a contribution to Snowmass 2021

2021 workshop

Magnetic monopoles

Magnetic field in $5.02\,\text{TeV}$ PbPb

$$|B| \simeq 4 \cdot 10^{16} \, \mathrm{T} \simeq 7 \, \mathrm{GeV^2}$$

Magnetic charges

$$abla \cdot E =
ho_E$$
 , $abla \times E = -\partial_t B - j_M$
 $abla \cdot B =
ho_M$, $abla \times B = -\partial_t E - j_E$

Dirac quantisation

$$g \in g_D \mathbb{Z}$$
 with $g_D = 2\pi/e_0$

MoEDAL

ATLAS

Drell-Yan crosssection is wrong

$$e
ightarrow g = 2\pi/e$$
 Duality

Because $g_D \approx 20.7 \gg 1$ Process is non-perturbative

2019 Instanton tunneling action

$$\Gamma \propto e^{-S_{\rm inst}}$$

Monopole Schwinger production

$$\Gamma = \frac{g^2|B|^2}{8\pi^3} \exp\left(\frac{g^2}{4} - \frac{\pi m^2}{g|B|}\right)$$

Needs strong magnetic field

Time dependence enhanced production for rapid pulses

Spatial inhomogeneity

Effect not known

Solitonic monopole size

Enhances production

Magnetic monopoles in MoEDAL

Physics potential

- Magnetic monopoles
- Multiply charged particles
- Long-lived particles
- Mini charged particles
- Q-balls
- Strangelets
- Highly ionizing particles

Magnetic monopoles in pp 2019

Leading limits

1.5 TeV < m < 3.75 TeV

 $2g_D < g < 5g_D$

Only photon fusion and Drell-Yan

No non-perturbative effects

Magnetic monopoles in PbPb

New result: 2106.11933 Includes Schwinger production

Exclusion of masses up to $75\,\text{GeV}$

New Physics @ CMS

Magnetic monopoles under investigation

Signature considerations

Non-helicoidal trajectory Heavily ionising Specific shower shape If monopolium: decay to $\gamma\gamma$

Naive estimate for PbPb using Superchic3 only large clusters in tracker no systematic uncertainties $M \sim 400 \, \text{GeV} \, @ \, 95 \, \% \, \text{CL}$

Axion like particles (ALPs) light pseudoscalar

Often studied via $\gamma\gamma$ interaction

Ultra peripheral HI collisions

 $E_T > 2\, ext{GeV} \ |\eta| < 2.4 \ m_{\gamma\gamma} > 5\, ext{GeV} \ p_T < 1\, ext{GeV} \ A_\phi = |1 - \Delta\phi/\pi| < 0.01$

ALPs @ ATLAS

Search strategy

exactly two photons with $E_T > 2.5 \,\text{GeV}$ and $|\eta| < 2.37$

invariant mass $m_{\gamma\gamma} > 5 \, {
m GeV}$

Veto

no tracks with $p_T > 100\,\mathrm{MeV}$

no pixel tracks with $p_T > 50\, {
m MeV}$ and $|\eta_{t\gamma}| < 0.5$

Back-to-back topology

 $p_T(\gamma\gamma) < 2\,\text{GeV}$ reduced acoplanarity < 0.01

Partially exploits low trigger

ALPs @ LHCb

Study used

- Superchic3
- FPMC (modified for PbPb)

Acceptances included

Main backgrounds

- light-by-light scattering
- di-electron with misidentification

Photon reconstruction in pPb

Expected to surpass current limits

for masses below 5 GeV

Light ALPs also accessible @ ALICE

Potential New Physics search without competition by CMS or ATLAS

τ -lepton g-2

anomalous magnetic moment

$$a_{\tau}=(g_{\tau}-2)/2$$

Constraint from DELPHI

 $-0.052 < a_{\tau} < 0.013$

poorly constrained due to short lifetime

Measure in HI

Differential distribution

Cancel uncertainties using

ratio to ee, $\mu\mu$ processes

Sexaquarks

S = uuddss spin, colour, and flavour singlet

$$m_S \approx 2m_p$$
 $B = -2$
 $Q = 0$ $S = -2$

no pion interactions

Tightly bound and compact $r_{\rm S} \approx 0.2 \, {\rm fm}$

Dark matter candidate Quasi stable with $\Omega_{\rm DM}/\Omega_b \approx 5$ without free parameters

So far not excluded

Despite searches for the H-dibaryon with same quark content

Because search relies on

- unstable particle
- heavy particle (> 2 GeV)
- interaction with Λ

However

S is similar to neutron

Proposal

search in HI collisions behind a neutron absorber shield

Muon deficit in cosmic rays just above LHC energies

Described by

- string fragmentation
- high density effects in hadronization
- diffraction
- higher order effects (multi-Pomerons)
- remnants

Muon production

in air showers badly described

Muon deficit in simulations

Ad hoc change of

uncertainties mostly due to nuclear collision extrapolations

Need input

from light ion collisions data

Precision measurements in

pA and AA with A < 20needed

Ideal test

pO and OO collisions

Although LHC results suggest that the muon deficit problem is due to SM uncertainties there is room for NP models

New Physics @ ALICE

 M_{eq} (GeV/ c^2)

Conclusion

- Second successful workshop on New Physics searches in heavy ion collisions
- Potential New Physics (more than presented in this talk)
 - Magnetic monopoles
 - Axion-like particles
 - Sexaquarks
 - Dark photons
 - Soft New Physics
 - Long-lived New Physics
- Connection to
 - Cosmic ray air showers
 - τ -lepton g-2
 - Gravitational waves
- Summary will be published as contribution to Snowmass 2021

Appendix

Upcoming HI runs at the LHC

PbPb and p Pb in Run 3 and 4
more collisions at LHCb
minor penalty for the others

1-month PbPb

 $\begin{array}{ll} \rm 2.2-2.8~nb^{-1}~ATLAS/ALICE/CMS \\ \sim 0.5~nb^{-1} & LHCb \end{array}$

 $\sim 5 \ \text{runs}$ to reach targets

 13 nb^{-1} IP1/2/5 2 nb⁻¹ IP8

Future work performance enhancements studies

1-month *p*Pb

 $530-690 \text{ nb}^{-1}$ ATLAS/CMS 310 nb^{-1} ALICE 150 nb^{-1} LHCb

Two runs sufficient 1200 nb⁻¹

 $\begin{array}{lll} 1200 \ \text{nb}^{-1} & & \text{IP1/5} \\ 600 \ \text{nb}^{-1} & & \text{IP2} \\ \text{factor} \sim 2 \ \text{missing} & \text{LHCb} \end{array}$

Beam loss mitigation

Orbit bumps
Crystal collimators
(Dispersion suppressor collimators)

Options for short light ion run with OO and pO

Motivation

physics interest machine performance study for future light-ion operation

Run 5

Updated scenarios for light-ion operation under study

The SuperChic Monte Carlo event generator

Ultraperipheral HI collisions γγ collisions key mode for BSM

SuperChic 4 MC

production

full differential generator

Central exclusive processes (CEP)

- QCD induced
- photon induced

including survival factor for pp, pA, and AA

Examples

- τ -lepton g-2
- ALPs and light-by-light scat.
- Monopoles

Photon flux n_i well known in terms of EM form factor

Survival factor captures additional soft production

impact parameter dependence

Light dark photons from meson decays

GSI SIS18 detector in Darmstadt

pp at 3.5 GeV pNb at 3.5 GeV Ar KCl at 1.76A GeV Theoretical description

with Parton Hadron String Dynamics (PHSD)

a non-equilibrium microscopic transport approach

Production of dark photons

in Dalitz decays

- ullet π^0 , $\eta o \gamma \gamma_{dark}$
- $lacksquare \Delta o extstyle extstyle extstyle ag{dark}$

Decay into lepton pair

 $\gamma_{dark}
ightarrow e^+ e^-$

Described approach

allows flexible reinterpretation of experimental constraints

Predictions w/o exp. acceptance

Reproduce

upper limit on kinetic mixing for 0.15 GeV $< m_{\gamma_{
m dark}} <$ 0.4 GeV

Soft New Physics

Idea: Soft leptons in HI
Higher Sensitivity due to lower
trigger

Soft long-lived particles

Light right-handed neutrinos

long-lived escape QGP unhindered

Ideas for searches

- exploit low triggers
- use lighter ions

Lighter ions can have advantage over *pp* collisions at equal running time

New particle observations in PbPb @ CMS

Potential heavy New Physics in cosmic rays

Air showers

QCD interactions under extrem conditions

Interaction energy

considerably above LHC energy

Muon deficit problem

Air shower simulation produce much fewer muons for showers above $10^7\,\text{GeV}$

Idea: Heavy New Physics

that produces many muons

CORSIKA8

Framework for investigations of particle cascades in astroparticle physics

Simulation of New Physics models

is able to explain the muon deficit problem

ANTIA excess

long-lived particle searches in cosmic ray air showers

CASTOR Calorimeter @ CMS

Very forward calorimeter

Successful data taking in Run 1 and 2

Unique calorimeter data

 $-6.6 < \eta < -5.2$

Centrality and pseudorapidity dependence

of transverse energy density in pPb

Inclusive very forward jet cross sections in pPb

Potential studies of New Physics

Baryon-rich forward fragmentation region search for strangelets and penetrating particles

Gravitational Waves

Proposal to test

mHz gravitational waves at LHC

Method

Change in bunch travel time due to change in test mass velocity

Velocity change causes significant effect on travel time

LHC

used as storage ring

Needs additional detection system

Noise sources

- Quantum noise (quantum uncertainty in time-tagging proton bunches)
- Gravity gradient noise (due to sun, moon, alps, ...)
- Seismic noise
- Radio frequency phase noise

Sensitivity

Idea

Probe gravitational waves during heavy ion runs

Questions

Effect of rest gas collisions

Effect of synchrotron radiation

Impact of lower energy